e-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析する

 総務省の公開しているe-Statには社会疫学的指標が多く含まれる.今回熱中症搬送人員数に様々な指標を加えて解析してみた.

 説明変数として日最高気温,日平均水蒸気圧,都道府県人口に加えて過去30日間の平均気温,エアコン保有台数,年間収入のジニ係数,光熱・水道費,実収入,第1次産業就業者比率,第2次産業就業者比率,都市公園数,都市緑化割合,自然公園割合,自然公園数,生活保護被保護人員を加えた.

 すべての変数が有意であったが,VIFを見ると多重共線性を疑わせる変数もあり,良いモデルとは言えない結果となった.

“e-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析する” の続きを読む

熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる

 以前の記事では都道府県人口の対数をオフセット項として一般化線形回帰分析を行った.実際のところ,年代別の搬送人員としては65歳以上の高齢者が圧倒的に多い.そのため,東京など労働人口の多いところでは予測性能が悪化する可能性がある.今回はオフセット項の都道府県人口を3区分に分け,65歳以上人口の対数をオフセット項として採用してみたところ予測性能が改善したと思われたので記事とした.

“熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる” の続きを読む

熱中症搬送人員数に平均風速や平均雲量は影響するか

 熱中症搬送人員数に日最高気温と平均水蒸気圧が強く影響することは疑いの余地がない.他の気象条件として風速や雲量が負の影響をおよぼす可能性はないだろうか.言い換えると,風速が強ければ熱中症を発症する可能性が下がることは考えられないか,晴れよりも曇りや雨の日は熱中症を発症する可能性が下がることは考えられないかということである.

 前回の記事で熱中症データベースに平均風速をインポートした.詳細は割愛するが,同様の手順で平均雲量のデータもインポートできる.

 今回は説明変数として日最高気温,平均水蒸気圧に平均風速および平均雲量を加えて一般化線形モデルにて解析を行い,tree関数で可視化を試みた.

“熱中症搬送人員数に平均風速や平均雲量は影響するか” の続きを読む

一般化線形混合モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する

 総務省消防庁の公開している熱中症搬送人員数は都道府県ごとに毎日データを反復抽出しているとも言える.複数の都道府県から繰り返しデータを取るのは独立した反復ではなく,疑似反復と考えられる.このような場合,都道府県単位で差が生じると考えられ,一般化線形混合モデルを用いて回帰係数を推定する必要がある.

 今回はRのglmmML()関数を用いて一般化線形混合モデルを用いた回帰係数の推定を行った.

“一般化線形混合モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する” の続きを読む

ポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する

 以前,熱中症搬送人員数は日最高気温と相関関係があり,片対数グラフで直線になると述べた.今回はポアソン回帰モデルおよび負の二項分布モデルで熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する.

“ポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する” の続きを読む