社会疫学的指標を考慮した都道府県別の熱中症搬送人員数の予測と実際

 都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描くでは独立変数として日最高気温,日平均水蒸気圧,65歳以上人口,人口密度を投入し都道府県別の熱中症搬送人員数を予測した.以前の記事ではe-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析した.社会疫学的指標としては日最高気温,日平均水蒸気圧,都道府県人口に加えて過去30日間の平均気温,エアコン保有台数,年間収入のジニ係数,光熱・水道費,実収入,第1次産業就業者比率,第2次産業就業者比率,都市公園数,都市緑化割合,自然公園割合,自然公園数,生活保護被保護人員である.

 今回は社会疫学的指標を独立変数として加えた熱中症搬送人員数の予測と実際を示す.

“社会疫学的指標を考慮した都道府県別の熱中症搬送人員数の予測と実際” の続きを読む

都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

 前回の記事では2019年の都道府県別の熱中症搬送人員数を1枚のグラフで描いた.今回は都道府県別に2008年から2021年までの熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く.

 Heat-related mortality: a review and exploration of heterogeneityというレビューでは人口密度が高いほど熱の影響が大きいことが示されている.その理由として高度に設計された環境では蓄熱量が大きく,換気が悪く,自動車やエアコン等の熱源が局在するいわゆる都市のヒートアイランド現象が起きているためであると説明している.

 それを受けて,詳細は割愛するが,都道府県総人口をその可住地面積(e-Statより)で割った人口密度を投入してみた.するとその係数は大きさこそ小さいものの,符号は負となり,投入前よりもAICが改善した(488368->478801).人口密度が大きいほど搬送数が減少するという意味である.これはにわかには信じがたい.考えられる理由として,日本においては人口密度の高い都市部ほど空調導入率が高い可能性がある.しかし,空調導入率そのものの指標がないため,検証は困難である.

“都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

熱中症搬送人員数の予測と実際

 これまでの記事で日最高気温と平均水蒸気圧,各都道府県65歳以上人口および月から熱中症の搬送人員数を予測する回帰式の回帰係数を推定してきた.

 今回はその回帰式を元に実際のデータと比較してみたい.対象は2019年の47都道府県とする.

“2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移をグラフ化する

都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移

 eStatから日本の資源収支を概略するで概略を取り上げた話題の一つに,トイレ水洗化人口が挙げられる.今回は各都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移をグラフ化する.

“都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移をグラフ化する” の続きを読む

東日本大震災の避難者数の統計を調べる

 件の統計は復興庁の全国の避難者の数(所在都道府県別・所在施設別の数にあるが,このページはトップページから辿ることができず,検索からのみ到達できる.時系列でのデータは必須と思われるが,トップページから辿れるのは最新の情報のみであり,これは国民の利益に反する.

“東日本大震災の避難者数の統計を調べる” の続きを読む

EXCEL VBA で既存のテーブルにネットワークドライブ上の Workbook からデータを追記する

FileSystemObject と VBA の関係

 前回の記事ではフォルダーから一括してデータを読み込む方法を紹介した.今回は月次の更新ファイルを読み込んで既存のテーブルにデータを追記する方法を紹介する.

 既に読み込んだファイルは拒否したい.監査としてのワークシートが必要だ.リレーショナルデータベースならデータの一意制約から可能だが,EXCEL では自前で作る必要がある.

 色々と挑戦しがいのある課題であった.

“EXCEL VBA で既存のテーブルにネットワークドライブ上の Workbook からデータを追記する” の続きを読む

EXCEL VBA でフォルダ内のブックを開きデータを読み込む

FileSystemObject と VBA の関係

 Power Query が使えないと不便である.先日 EXCEL 2010 の素の環境でフォルダ内のブックをすべて開き,データを読み込む必要があったのだが,Power Query が使えなかったため,VBA でブックを開いて読み込まなければならなかった.備忘録としての記事である.

 この記事はPower Query でフォルダから複数ファイルを一括インポートすると対応している.やっていることは同じだが,.xls 形式だとクエリの検証に時間がかかるため,VBA で読み込んだほうが動作は早いかもしれない.

 フォルダー内のファイル一覧を取得するには FileSystemObject を使う場合と Dir() 関数を使う方法とがある.ここでは FileSystemObject を使うことにする.

 データは Range オブジェクトに格納されているため,Range オブジェクトを取得するのが当面の目標となる.

“EXCEL VBA でフォルダ内のブックを開きデータを読み込む” の続きを読む

1920年から2015年までの都道府県別の5歳階級別人口推移

1920年から2015年までの都道府県別の5歳階級別人口推移

 e-Stat を渉猟していると面白いファイルを見つけた.国勢調査は 1920 年から開始されており, 2020 年 3 月現在では最新の調査結果は 2015 年のものである.20 回分の人口データが一つのファイルにまとめられており,グラフ化するには格好のデータである.

 年齢(5歳階級),男女別-都道府県(大正9年~平成27年)というファイルである.リンク先のページにはファイルが 3 つあるが,最後のものが最も粒度が細かいので,これをグラフ化する.

年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)
年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)

“1920年から2015年までの都道府県別の5歳階級別人口推移” の続きを読む