社会疫学的指標を考慮した都道府県別の熱中症搬送人員数の予測と実際

 都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描くでは独立変数として日最高気温,日平均水蒸気圧,65歳以上人口,人口密度を投入し都道府県別の熱中症搬送人員数を予測した.以前の記事ではe-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析した.社会疫学的指標としては日最高気温,日平均水蒸気圧,都道府県人口に加えて過去30日間の平均気温,エアコン保有台数,年間収入のジニ係数,光熱・水道費,実収入,第1次産業就業者比率,第2次産業就業者比率,都市公園数,都市緑化割合,自然公園割合,自然公園数,生活保護被保護人員である.

 今回は社会疫学的指標を独立変数として加えた熱中症搬送人員数の予測と実際を示す.

“社会疫学的指標を考慮した都道府県別の熱中症搬送人員数の予測と実際” の続きを読む

都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

 前回の記事では2019年の都道府県別の熱中症搬送人員数を1枚のグラフで描いた.今回は都道府県別に2008年から2021年までの熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く.

 Heat-related mortality: a review and exploration of heterogeneityというレビューでは人口密度が高いほど熱の影響が大きいことが示されている.その理由として高度に設計された環境では蓄熱量が大きく,換気が悪く,自動車やエアコン等の熱源が局在するいわゆる都市のヒートアイランド現象が起きているためであると説明している.

 それを受けて,詳細は割愛するが,都道府県総人口をその可住地面積(e-Statより)で割った人口密度を投入してみた.するとその係数は大きさこそ小さいものの,符号は負となり,投入前よりもAICが改善した(488368->478801).人口密度が大きいほど搬送数が減少するという意味である.これはにわかには信じがたい.考えられる理由として,日本においては人口密度の高い都市部ほど空調導入率が高い可能性がある.しかし,空調導入率そのものの指標がないため,検証は困難である.

“都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

熱中症搬送人員数の予測と実際

 これまでの記事で日最高気温と平均水蒸気圧,各都道府県65歳以上人口および月から熱中症の搬送人員数を予測する回帰式の回帰係数を推定してきた.

 今回はその回帰式を元に実際のデータと比較してみたい.対象は2019年の47都道府県とする.

“2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

iOSのルートヒストリーから取得したGPXファイルをQGISでシェープファイルに変換しSQL Serverにアップロードする

 我々の手元にあるスマホにはかなり高性能な衛星測位システムが備わっている.GPS, GLONASS, QZSS, Galileo など.それぞれ米国,ロシア,日本,EU が管理するものである.これらのシステムを利用したアプリにルートヒストリーというものがあり,移動経路をログとして記録できる.今回はこのアプリから取得したファイルをQGISでシェープファイルに変換し,SQL Serverにアップロードするまでを記事とした.

“iOSのルートヒストリーから取得したGPXファイルをQGISでシェープファイルに変換しSQL Serverにアップロードする” の続きを読む

第 11 章 空間オブジェクトのプロパティを検査する(Begining Spatial with SQL Server 2008)

SQL Server

第 4 部 空間データの解析

 本書のこの部では,geography 型および geometry 型でデータをフィルターし解析できるメソッドを論ずる.それはアプリケーションにおいて空間データの力を開発するのに使うのに必要な主要な機能を提供してくれる.
 そのメソッドは3つのカテゴリに分類される.章ごとに一つ.第11章では個別の空間オブジェクトのプロパティについての情報を解析して返すメソッドを扱う.第12章では既存のオブジェクト間の組み合わせまたは修飾の間の新しいオブジェクトを定義するメソッドをカバーする.第13章ではオブジェクト間の関係をテストするメソッドを紹介する.例えば同一性,近接性,交差などである.

“第 11 章 空間オブジェクトのプロパティを検査する(Begining Spatial with SQL Server 2008)” の続きを読む

都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移をグラフ化する

都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移

 eStatから日本の資源収支を概略するで概略を取り上げた話題の一つに,トイレ水洗化人口が挙げられる.今回は各都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移をグラフ化する.

“都道府県ごとの下水道によるトイレ水洗化人口の人口に占める割合の推移をグラフ化する” の続きを読む

東日本大震災の避難者数の統計を調べる

 件の統計は復興庁の全国の避難者の数(所在都道府県別・所在施設別の数にあるが,このページはトップページから辿ることができず,検索からのみ到達できる.時系列でのデータは必須と思われるが,トップページから辿れるのは最新の情報のみであり,これは国民の利益に反する.

“東日本大震災の避難者数の統計を調べる” の続きを読む

CytoscapeでEXCELのオブジェクトモデルを表現する

Cytoscape起動画面

 オブジェクトブラウザーは VBA のオブジェクト構造を記述したものである.しかし,EXCEL 全体のオブジェクトモデルを一覧できるような機能はない.今回,全く別領域のソフトウェアを用いて EXCEL のオブジェクトモデルを表現してみたので備忘録として公開する.

“CytoscapeでEXCELのオブジェクトモデルを表現する” の続きを読む

Word のスタイルをマクロ記録する

Manage Styles, Edit

 『エンジニアのためのWord再入門講座』を読み進めている.スタイルの扱いが重要であることは分かった.惜しいのは,VBA のオブジェクトからの視点がないことである.筆者の主観ではオブジェクトの視点があると理解が早まる気がしている.完全に自分のための備忘録である.

“Word のスタイルをマクロ記録する” の続きを読む