空間相関を考慮した一般化線形モデル(ポアソンCARモデル)で熱中症搬送人員数をベイズ推定してみたが…

  前回はマルコフ連鎖モンテカルロ法にて熱中症搬送人員数をベイズ推定した.今回は空間相関を考慮した一般化線形モデル(ポアソンCARモデル)で熱中症搬送人員数をベイズ推定しようと試みた.結論から言うとうまく行っていない.途中でエラーが出てモデル構築に失敗する.その経過を記事とした.

“空間相関を考慮した一般化線形モデル(ポアソンCARモデル)で熱中症搬送人員数をベイズ推定してみたが…” の続きを読む

熱中症搬送人員数をマルコフ連鎖モンテカルロ法でベイズ推定する

 空間統計を勉強している.空間相関を考慮した一般化線形モデルが地域ごとのカウントデータやバイナリーデータをモデル化するために提案されている.今回はCARモデルを扱う.CARBayesでは空間相関を考慮しない通常のポアソン回帰モデルも扱えたため備忘録として公開する.

“熱中症搬送人員数をマルコフ連鎖モンテカルロ法でベイズ推定する” の続きを読む

熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる

 以前の記事では都道府県人口の対数をオフセット項として一般化線形回帰分析を行った.実際のところ,年代別の搬送人員としては65歳以上の高齢者が圧倒的に多い.そのため,東京など労働人口の多いところでは予測性能が悪化する可能性がある.今回はオフセット項の都道府県人口を3区分に分け,65歳以上人口の対数をオフセット項として採用してみたところ予測性能が改善したと思われたので記事とした.

“熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる” の続きを読む

一般化線形混合モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する

 総務省消防庁の公開している熱中症搬送人員数は都道府県ごとに毎日データを反復抽出しているとも言える.複数の都道府県から繰り返しデータを取るのは独立した反復ではなく,疑似反復と考えられる.このような場合,都道府県単位で差が生じると考えられ,一般化線形混合モデルを用いて回帰係数を推定する必要がある.

 今回はRのglmmML()関数を用いて一般化線形混合モデルを用いた回帰係数の推定を行った.

“一般化線形混合モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する” の続きを読む

熱中症搬送人員数に都道府県人口をオフセット項として追加し一般化線形回帰分析を行う

 以前の記事ではポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定した.

 人口10万人あたり何名の罹患者数,というのは割り算値である.総務省消防庁の公開している熱中症搬送人員数は都道府県ごとの搬送数であり,もともと都道府県別人口が異なるのだから搬送人員数を都道府県人口で割った割合のほうが指標として適切なのではないか,という指摘は一理ある.

 しかし,割り算値ではなく実数を解析すべきである.変形した観測値を統計モデルの応答変数にするのは不必要であるばかりか,誤った結果を導きかねないからである.割り算値からは確からしさの情報が失われること,変換された値の分布が不明であることから,割り算値は避けるべきである.その代わりに割り算の分母をオフセット項として線形予測子に組み込む手法がある.

 熱中症搬送人員数はカウントデータであり,その期待値は集計ゾーンの集計対象人口に依存する.都道府県人口をオフセット項とすることで,都道府県の人口規模の影響を調整した回帰分析ができる.今回は都道府県人口をオフセット項として線形予測子に組み込み,一般化線形回帰分析を行ってみた.

“熱中症搬送人員数に都道府県人口をオフセット項として追加し一般化線形回帰分析を行う” の続きを読む