二乗平均平方根誤差とは英語では Root Mean Squared Error (RMSE) と書く.真値と予測値との乖離(誤差)を二乗し,その平均値をとり,その平方根を求めた値のことである.非負の値を取り,0に近いほど優れたモデルであることを示唆する.
今回使用するのはe-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析するで使用したデータベースである.先の記事では回帰モデルを評価する指標が必要との認識であった.
Co-evolution of human and technology
二乗平均平方根誤差とは英語では Root Mean Squared Error (RMSE) と書く.真値と予測値との乖離(誤差)を二乗し,その平均値をとり,その平方根を求めた値のことである.非負の値を取り,0に近いほど優れたモデルであることを示唆する.
今回使用するのはe-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析するで使用したデータベースである.先の記事では回帰モデルを評価する指標が必要との認識であった.
都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描くでは独立変数として日最高気温,日平均水蒸気圧,65歳以上人口,人口密度を投入し都道府県別の熱中症搬送人員数を予測した.以前の記事ではe-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析した.社会疫学的指標としては日最高気温,日平均水蒸気圧,都道府県人口に加えて過去30日間の平均気温,エアコン保有台数,年間収入のジニ係数,光熱・水道費,実収入,第1次産業就業者比率,第2次産業就業者比率,都市公園数,都市緑化割合,自然公園割合,自然公園数,生活保護被保護人員である.
今回は社会疫学的指標を独立変数として加えた熱中症搬送人員数の予測と実際を示す.
前回は感度と特異度をユーザー定義のスカラー値関数として定義した.今回はそれを利用して閾値を求める.
“ROC曲線の閾値を求めるストアドプロシージャまたはインラインテーブル値関数をSQL Serverで定義する” の続きを読む
前回の記事では階乗を求めるユーザー定義関数を経てFisherの直接確率をストアドプロシージャで求めた.今回は四分表から感度と特異度を求めたい.
熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定するでは最高気温と搬送人員との相関関係を解析した.今回は水蒸気圧と搬送人員との関係を可視化し,閾値を求めた.重症度別の搬送人員についての検討は日平均蒸気圧と熱中症の重症度別搬送人員との関連を調べるに記述した.