熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる

 以前の記事では都道府県人口の対数をオフセット項として一般化線形回帰分析を行った.実際のところ,年代別の搬送人員としては65歳以上の高齢者が圧倒的に多い.そのため,東京など労働人口の多いところでは予測性能が悪化する可能性がある.今回はオフセット項の都道府県人口を3区分に分け,65歳以上人口の対数をオフセット項として採用してみたところ予測性能が改善したと思われたので記事とした.

“熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる” の続きを読む

熱中症の重症度別搬送人員数を最高気温と平均湿度別にプロットする

気温・湿度別の重症度別搬送人員

 熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定するでは最高気温と搬送数をプロットした.今回は気象庁から湿度のデータをダウンロードし,重症度別にプロットして可視化する.

“熱中症の重症度別搬送人員数を最高気温と平均湿度別にプロットする” の続きを読む

1920年から2015年までの都道府県別の5歳階級別人口推移

1920年から2015年までの都道府県別の5歳階級別人口推移

 e-Stat を渉猟していると面白いファイルを見つけた.国勢調査は 1920 年から開始されており, 2020 年 3 月現在では最新の調査結果は 2015 年のものである.20 回分の人口データが一つのファイルにまとめられており,グラフ化するには格好のデータである.

 年齢(5歳階級),男女別-都道府県(大正9年~平成27年)というファイルである.リンク先のページにはファイルが 3 つあるが,最後のものが最も粒度が細かいので,これをグラフ化する.

年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)
年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)

“1920年から2015年までの都道府県別の5歳階級別人口推移” の続きを読む

今後25年間の日本の都市の将来推計人口を EXCEL VBA で描く

データ系列のマーカースタイルを消去

 これまでは日本の都市人口の過去の推移を見てきた.総務省には日本の都市人口の推移予測がある.今回はこのデータをグラフにする.

 データを可視化するにあたり,重要なのは引き算である.強調すべき系列のみを強調するために,VBA の知識が欠かせない.

 グラフの系列にデータラベルを表示する方法にはいくつかある.

“今後25年間の日本の都市の将来推計人口を EXCEL VBA で描く” の続きを読む