2020 年の国勢調査の結果がようやくeSTATに反映された.日本の市区町村よりも粒度の細かい小地域(町丁・字等別)の人口構成が公表されたのは2022年6月24日付である.今回はこのデータをSQL Serverに取り込んでみたい.
“eSTATの小地域(町丁・字等別)毎の年齢(5歳階級、4区分)別、男女別人口をSQL ServerにBULK INSERTする” の続きを読む
Co-evolution of human and technology
2020 年の国勢調査の結果がようやくeSTATに反映された.日本の市区町村よりも粒度の細かい小地域(町丁・字等別)の人口構成が公表されたのは2022年6月24日付である.今回はこのデータをSQL Serverに取り込んでみたい.
“eSTATの小地域(町丁・字等別)毎の年齢(5歳階級、4区分)別、男女別人口をSQL ServerにBULK INSERTする” の続きを読む
総務省の eStat を見ていて新しい項目が増えていることに気がついた.今回は統計ダッシュボードからエネルギー・水に関するデータをダウンロードする.
国勢調査をもとに作成された境界データダウンロードサービスがある.市区町村よりも更に細かい,町字の粒度でのGISデータである.今回は関東地方のデータをダウンロードし,QGISで人口密度を可視化する.
“eStatの地図で見る統計(統計GIS)データダウンロードから小地域の境界データをダウンロードし,人口密度をQGISで表現する” の続きを読む
色の知覚(1)太陽光では,新エネルギー・産業技術総合開発機構の日射データが巨大すぎてインポートできなかった.データをある程度絞り込むことで何とかならないか,試行錯誤した結果を報告する.
国土交通省のサービスの一つに位置参照情報ダウンロードサービスがある.何気なくファイルをダウンロードして,思いがけない発見があったため,記事を書くことにした.
人口統計は最も重要な基幹統計の一つである.総務省の e-Stat は確かに有用であるが,かゆいところに手が届かない.例えば「市区町村ごと,年齢5歳階級ごとの人口構成の国勢調査ごとの推移を知りたい」という要求には全く無力である.
主として技術的な理由によるものと,統計調査の粒度の細かさによる.技術的な理由としては,データベースの画面表示セル数の上限を容易に超えてしまうデータ量になってしまうことである.しかし,根本的な理由は調査の粒度の細かさである.
2005 年以前と 2010 年以降とでは調査の精度が違う.今後は高精度なデータファイルが e-Stat に掲載されていくものと思われるが,2005 年以前に関しては都道府県より細かい粒度は存在しない.そこを求めると手作業になってしまい,現実的ではない.国立社会保障・人口問題研究所ならデータを持っているかもしれない.
2020 年は国勢調査の年にあたる.総務省にはできるだけ細かい粒度でのデータ掲載を望むものである.
また面倒な統計を見つけてしまった.Power Query に食わせれば早いのかも知れないが,どうにも埒が明かないので手動でデータを整形することになった.頼むから第一正規形で公開してくれ…
データベースに接続して一つのテーブルをインポートするのは比較的簡単であるが,複数のテーブルを結合した状態でインポートする方法が長らく分からないままだった.
Power Query を使ってクエリを結合する方法で解決したので備忘録がてら記事とする.
日本の人口統計は総務省が 5 年おきに行う国勢調査が元になっている.日本の市の人口順位をEXCELにダウンロードして散布図に描くでは日本全国の都市の人口増減率と人口の関係を時系列で流すとどう推移するか予測した.今回はその予測が実態と合っているか乖離しているかの検証を行う.
気象庁のサクラ開花日のテキストファイルでは全国の地方気象台の所在地は明らかではなかった.ジオコーディングを始めるには所在地を正確にしておくことが重要だ.手始めに全国の地方気象台の所在地を確認することにした.