都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

 前回の記事では2019年の都道府県別の熱中症搬送人員数を1枚のグラフで描いた.今回は都道府県別に2008年から2021年までの熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く.

 Heat-related mortality: a review and exploration of heterogeneityというレビューでは人口密度が高いほど熱の影響が大きいことが示されている.その理由として高度に設計された環境では蓄熱量が大きく,換気が悪く,自動車やエアコン等の熱源が局在するいわゆる都市のヒートアイランド現象が起きているためであると説明している.

 それを受けて,詳細は割愛するが,都道府県総人口をその可住地面積(e-Statより)で割った人口密度を投入してみた.するとその係数は大きさこそ小さいものの,符号は負となり,投入前よりもAICが改善した(488368->478801).人口密度が大きいほど搬送数が減少するという意味である.これはにわかには信じがたい.考えられる理由として,日本においては人口密度の高い都市部ほど空調導入率が高い可能性がある.しかし,空調導入率そのものの指標がないため,検証は困難である.

“都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

1920年から2015年までの都道府県別の5歳階級別人口推移

1920年から2015年までの都道府県別の5歳階級別人口推移

 e-Stat を渉猟していると面白いファイルを見つけた.国勢調査は 1920 年から開始されており, 2020 年 3 月現在では最新の調査結果は 2015 年のものである.20 回分の人口データが一つのファイルにまとめられており,グラフ化するには格好のデータである.

 年齢(5歳階級),男女別-都道府県(大正9年~平成27年)というファイルである.リンク先のページにはファイルが 3 つあるが,最後のものが最も粒度が細かいので,これをグラフ化する.

年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)
年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)

“1920年から2015年までの都道府県別の5歳階級別人口推移” の続きを読む

国勢調査から5歳階級の人口推移を調べる

日本人口の年齢階級推移(国勢調査より筆者作成)

 人口統計は最も重要な基幹統計の一つである.総務省の e-Stat は確かに有用であるが,かゆいところに手が届かない.例えば「市区町村ごと,年齢5歳階級ごとの人口構成の国勢調査ごとの推移を知りたい」という要求には全く無力である.

 主として技術的な理由によるものと,統計調査の粒度の細かさによる.技術的な理由としては,データベースの画面表示セル数の上限を容易に超えてしまうデータ量になってしまうことである.しかし,根本的な理由は調査の粒度の細かさである.

 2005 年以前と 2010 年以降とでは調査の精度が違う.今後は高精度なデータファイルが e-Stat に掲載されていくものと思われるが,2005 年以前に関しては都道府県より細かい粒度は存在しない.そこを求めると手作業になってしまい,現実的ではない.国立社会保障・人口問題研究所ならデータを持っているかもしれない.

 2020 年は国勢調査の年にあたる.総務省にはできるだけ細かい粒度でのデータ掲載を望むものである.

“国勢調査から5歳階級の人口推移を調べる” の続きを読む