熱中症搬送人員数に都道府県人口をオフセット項として追加し一般化線形回帰分析を行う

 以前の記事ではポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定した.

 人口10万人あたり何名の罹患者数,というのは割り算値である.総務省消防庁の公開している熱中症搬送人員数は都道府県ごとの搬送数であり,もともと都道府県別人口が異なるのだから搬送人員数を都道府県人口で割った割合のほうが指標として適切なのではないか,という指摘は一理ある.

 しかし,割り算値ではなく実数を解析すべきである.変形した観測値を統計モデルの応答変数にするのは不必要であるばかりか,誤った結果を導きかねないからである.割り算値からは確からしさの情報が失われること,変換された値の分布が不明であることから,割り算値は避けるべきである.その代わりに割り算の分母をオフセット項として線形予測子に組み込む手法がある.

 熱中症搬送人員数はカウントデータであり,その期待値は集計ゾーンの集計対象人口に依存する.都道府県人口をオフセット項とすることで,都道府県の人口規模の影響を調整した回帰分析ができる.今回は都道府県人口をオフセット項として線形予測子に組み込み,一般化線形回帰分析を行ってみた.

“熱中症搬送人員数に都道府県人口をオフセット項として追加し一般化線形回帰分析を行う” の続きを読む

第 2 章 SQL Server 2008 で空間データを実装する (Beginning Spatial with SQL Server 2008)

 前章では,空間参照系の背後にある理論を紹介し,異なる種類のシステムが地球上の特徴を記述する方法を説明した.本章では,これらのシステムを適用して SQL Server 2008 における新しい空間データ型を使って空間情報を蓄積する方法を学んでもらう.

“第 2 章 SQL Server 2008 で空間データを実装する (Beginning Spatial with SQL Server 2008)” の続きを読む

厚労省「地域ごとのまん延の状況に関する指標等」の PDF から Power BI Desktop でデータを抽出し EXCEL のグラフに表現する

各都道府県の新型コロナウイルス確定患者数の推移

 新型コロナウイルスのパンデミック宣言以降,Twitter でフォローしているアカウントに自然と相互協調の動きがみられる.

 このツイートから始まった一連のやりとりで,厚労省の発表した PDF からテーブルを抽出するくだりに注目した.

 今回はここを画像つきで実施してみた.

“厚労省「地域ごとのまん延の状況に関する指標等」の PDF から Power BI Desktop でデータを抽出し EXCEL のグラフに表現する” の続きを読む

はたらくオブジェクト

Range オブジェクト編

「おい,新米 Range オブジェクト!何ボーッと突っ立ってんだよ」
「す,すみません!」
「お前,名前は?」
「は,はい.myRng1と申します.よろしくお願いいたします」
「仕事に来たら,まず名乗れ.それがここの流儀だ」
「それから,自分の職域も一緒に言うんだ.わかったか?」
「は,はい」
「最初に書いてあるだろ?Option Explicit ってな.俺も詳しくは知らねぇが,あのルールは絶対だ.名乗らない奴に居場所はない…ほら,仕事が来たぞ」
「何い?誰だ,こんな糞コード書いたのは?ワークシートに何回アクセスさせる気だよ,全く…ほれ,ここからあそこまで走って値を取ってこい」
「ここからあそこまでって…えーっ?本気で言ってます?」
「何言ってるんだ?ワークシートにアクセスするような力仕事は新米 Range オブジェクトの役割と相場が決まってるんだ.さあ行った行った」

“はたらくオブジェクト” の続きを読む

都道府県別の県内総生産額を EXCEL の散布図に描く

都道府県ごとの生産性と総生産額

 人口統計は国の将来を予測する重要な指標であるが,経済の指標である総生産も重要な指標である.これは国の元気さを示す値であり,報道では GDP と称されている.一人あたりの GDP とは生産性のことであり,国民の豊かさを示す値でもある.

 マクロ経済学についてはほぼ素人だが,データを扱うにあたり,都道府県ごとの総生産額と生産性は欠かせない指標と思われたので,調査ついでに公開しよう.

“都道府県別の県内総生産額を EXCEL の散布図に描く” の続きを読む