2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

熱中症搬送人員数の予測と実際

 これまでの記事で日最高気温と平均水蒸気圧,各都道府県65歳以上人口および月から熱中症の搬送人員数を予測する回帰式の回帰係数を推定してきた.

 今回はその回帰式を元に実際のデータと比較してみたい.対象は2019年の47都道府県とする.

“2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

熱中症搬送人員数に平均風速や平均雲量は影響するか

 熱中症搬送人員数に日最高気温と平均水蒸気圧が強く影響することは疑いの余地がない.他の気象条件として風速や雲量が負の影響をおよぼす可能性はないだろうか.言い換えると,風速が強ければ熱中症を発症する可能性が下がることは考えられないか,晴れよりも曇りや雨の日は熱中症を発症する可能性が下がることは考えられないかということである.

 前回の記事で熱中症データベースに平均風速をインポートした.詳細は割愛するが,同様の手順で平均雲量のデータもインポートできる.

 今回は説明変数として日最高気温,平均水蒸気圧に平均風速および平均雲量を加えて一般化線形モデルにて解析を行い,tree関数で可視化を試みた.

“熱中症搬送人員数に平均風速や平均雲量は影響するか” の続きを読む

一般化線形混合モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する

 総務省消防庁の公開している熱中症搬送人員数は都道府県ごとに毎日データを反復抽出しているとも言える.複数の都道府県から繰り返しデータを取るのは独立した反復ではなく,疑似反復と考えられる.このような場合,都道府県単位で差が生じると考えられ,一般化線形混合モデルを用いて回帰係数を推定する必要がある.

 今回はRのglmmML()関数を用いて一般化線形混合モデルを用いた回帰係数の推定を行った.

“一般化線形混合モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する” の続きを読む

ポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する

 以前,熱中症搬送人員数は日最高気温と相関関係があり,片対数グラフで直線になると述べた.今回はポアソン回帰モデルおよび負の二項分布モデルで熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する.

“ポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定する” の続きを読む

冬季における家庭血圧と屋内温度との関連の横断解析 日本全国のスマートウェルネス住宅調査

 表題の原文はCross-Sectional Analysis of the Relationship Between Home Blood Pressure and Indoor Temperature in Winter: A Nationwide Smart Wellness Housing Survey in Japan DOI: 10.1161/HYPERTENSIONAHA.119.12914で読める.家が寒いと血圧が上がるという経験則をデータで示した論文である.血圧が上がれば心血管疾患リスクが上がり,死亡率も上がる.したがって冬には死者が増える,という冬季超過死亡率の上昇まで見てあればよいのだが,残念ながら死亡はエンドポイントとして見ていない.それがこの研究の限界である.

“冬季における家庭血圧と屋内温度との関連の横断解析 日本全国のスマートウェルネス住宅調査” の続きを読む