社会疫学的指標を考慮した都道府県別の熱中症搬送人員数の予測と実際

 都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描くでは独立変数として日最高気温,日平均水蒸気圧,65歳以上人口,人口密度を投入し都道府県別の熱中症搬送人員数を予測した.以前の記事ではe-Statからの社会疫学的指標を加えて熱中症搬送人員数を分析した.社会疫学的指標としては日最高気温,日平均水蒸気圧,都道府県人口に加えて過去30日間の平均気温,エアコン保有台数,年間収入のジニ係数,光熱・水道費,実収入,第1次産業就業者比率,第2次産業就業者比率,都市公園数,都市緑化割合,自然公園割合,自然公園数,生活保護被保護人員である.

 今回は社会疫学的指標を独立変数として加えた熱中症搬送人員数の予測と実際を示す.

“社会疫学的指標を考慮した都道府県別の熱中症搬送人員数の予測と実際” の続きを読む

空間相関を考慮した一般化線形モデル(ポアソンCARモデル)で熱中症搬送人員数をベイズ推定してみたが…

  前回はマルコフ連鎖モンテカルロ法にて熱中症搬送人員数をベイズ推定した.今回は空間相関を考慮した一般化線形モデル(ポアソンCARモデル)で熱中症搬送人員数をベイズ推定しようと試みた.結論から言うとうまく行っていない.途中でエラーが出てモデル構築に失敗する.その経過を記事とした.

“空間相関を考慮した一般化線形モデル(ポアソンCARモデル)で熱中症搬送人員数をベイズ推定してみたが…” の続きを読む

熱中症搬送人員数をマルコフ連鎖モンテカルロ法でベイズ推定する

 空間統計を勉強している.空間相関を考慮した一般化線形モデルが地域ごとのカウントデータやバイナリーデータをモデル化するために提案されている.今回はCARモデルを扱う.CARBayesでは空間相関を考慮しない通常のポアソン回帰モデルも扱えたため備忘録として公開する.

“熱中症搬送人員数をマルコフ連鎖モンテカルロ法でベイズ推定する” の続きを読む

都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

 前回の記事では2019年の都道府県別の熱中症搬送人員数を1枚のグラフで描いた.今回は都道府県別に2008年から2021年までの熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く.

 Heat-related mortality: a review and exploration of heterogeneityというレビューでは人口密度が高いほど熱の影響が大きいことが示されている.その理由として高度に設計された環境では蓄熱量が大きく,換気が悪く,自動車やエアコン等の熱源が局在するいわゆる都市のヒートアイランド現象が起きているためであると説明している.

 それを受けて,詳細は割愛するが,都道府県総人口をその可住地面積(e-Statより)で割った人口密度を投入してみた.するとその係数は大きさこそ小さいものの,符号は負となり,投入前よりもAICが改善した(488368->478801).人口密度が大きいほど搬送数が減少するという意味である.これはにわかには信じがたい.考えられる理由として,日本においては人口密度の高い都市部ほど空調導入率が高い可能性がある.しかし,空調導入率そのものの指標がないため,検証は困難である.

“都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

eStatの地図で見る統計(統計GIS)データダウンロードから小地域の境界データをダウンロードし,人口密度をQGISで表現する

こちらの方が自然に感じられる

 国勢調査をもとに作成された境界データダウンロードサービスがある.市区町村よりも更に細かい,町字の粒度でのGISデータである.今回は関東地方のデータをダウンロードし,QGISで人口密度を可視化する.

“eStatの地図で見る統計(統計GIS)データダウンロードから小地域の境界データをダウンロードし,人口密度をQGISで表現する” の続きを読む