ZIPCLOUDの郵便番号データを入手しSQL Serverにインポートする

SQL Server

 PowerBIで郵便番号からヒートマップを作成するでは顧客マスターの郵便番号をZIPCLOUDの郵便番号データと紐づけてPowerBIに住所を取り込み,ヒートマップを作成する方法を書いた.

 今回はZIPCLOUDの郵便番号データをSQL Serverにインポートするまでを記載する.

“ZIPCLOUDの郵便番号データを入手しSQL Serverにインポートする” の続きを読む

eSTATの小地域(町丁・字等別)毎の年齢(5歳階級、4区分)別、男女別人口をSQL ServerにBULK INSERTする

SQL Server

 2020 年の国勢調査の結果がようやくeSTATに反映された.日本の市区町村よりも粒度の細かい小地域(町丁・字等別)の人口構成が公表されたのは2022年6月24日付である.今回はこのデータをSQL Serverに取り込んでみたい.

“eSTATの小地域(町丁・字等別)毎の年齢(5歳階級、4区分)別、男女別人口をSQL ServerにBULK INSERTする” の続きを読む

日別平均水蒸気圧と熱中症搬送人員との相関を可視化する

最高気温と平均水蒸気圧

 熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定するでは最高気温と搬送人員との相関関係を解析した.今回は水蒸気圧と搬送人員との関係を可視化し,閾値を求めた.重症度別の搬送人員についての検討は日平均蒸気圧と熱中症の重症度別搬送人員との関連を調べるに記述した.

“日別平均水蒸気圧と熱中症搬送人員との相関を可視化する” の続きを読む

熱中症の重症度別搬送人員数を最高気温と平均湿度別にプロットする

気温・湿度別の重症度別搬送人員

 熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定するでは最高気温と搬送数をプロットした.今回は気象庁から湿度のデータをダウンロードし,重症度別にプロットして可視化する.

“熱中症の重症度別搬送人員数を最高気温と平均湿度別にプロットする” の続きを読む

第 6 章 空間データをインポートする (Beginning Spatial with SQL Server 2008)

 多くの空間アプリケーションがカスタム定義の空間機能を組み合わせている.例えば顧客セットの局在と,広く受け入れられた表現の空間データ,地球上の汎用性のある特徴,例えば国や州の境界線,世界の主要都市の局在および主要な道路や鉄道の経路などである.この情報は自分自身で作成するよりも,多くの代替可能な資源が存在しており,そこから普通に使うための空間データを取得して空間アプリケーションに搭載できる.

 本章では,そこから一般公開された空間情報を取得できる資源,そこでそのデータが普通に提供されるフォーマットおよびその情報を SQL Server にインポートするのに使える技術を紹介しよう.

“第 6 章 空間データをインポートする (Beginning Spatial with SQL Server 2008)” の続きを読む

Windows 上の SQL Server Management Studio から Ubuntu 上の SQL Server にデータベースを作成し,テーブルを挿入する

 Windows 環境にインストールした SQL Server Management Studio から Ubuntu にインストールした SQL Server にデータベースを作成し,テキストファイルからインポートしてテーブルを作成する方法を紹介する.

 インポートするテキストファイルは今回は日本標準食品成分表 2015 年版を使用する.第一正規形であれば何でもよい.

“Windows 上の SQL Server Management Studio から Ubuntu 上の SQL Server にデータベースを作成し,テーブルを挿入する” の続きを読む