熱中症搬送人員数をマルコフ連鎖モンテカルロ法でベイズ推定する

 空間統計を勉強している.空間相関を考慮した一般化線形モデルが地域ごとのカウントデータやバイナリーデータをモデル化するために提案されている.今回はCARモデルを扱う.CARBayesでは空間相関を考慮しない通常のポアソン回帰モデルも扱えたため備忘録として公開する.

“熱中症搬送人員数をマルコフ連鎖モンテカルロ法でベイズ推定する” の続きを読む

都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

 前回の記事では2019年の都道府県別の熱中症搬送人員数を1枚のグラフで描いた.今回は都道府県別に2008年から2021年までの熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く.

 Heat-related mortality: a review and exploration of heterogeneityというレビューでは人口密度が高いほど熱の影響が大きいことが示されている.その理由として高度に設計された環境では蓄熱量が大きく,換気が悪く,自動車やエアコン等の熱源が局在するいわゆる都市のヒートアイランド現象が起きているためであると説明している.

 それを受けて,詳細は割愛するが,都道府県総人口をその可住地面積(e-Statより)で割った人口密度を投入してみた.するとその係数は大きさこそ小さいものの,符号は負となり,投入前よりもAICが改善した(488368->478801).人口密度が大きいほど搬送数が減少するという意味である.これはにわかには信じがたい.考えられる理由として,日本においては人口密度の高い都市部ほど空調導入率が高い可能性がある.しかし,空調導入率そのものの指標がないため,検証は困難である.

“都道府県別の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く

熱中症搬送人員数の予測と実際

 これまでの記事で日最高気温と平均水蒸気圧,各都道府県65歳以上人口および月から熱中症の搬送人員数を予測する回帰式の回帰係数を推定してきた.

 今回はその回帰式を元に実際のデータと比較してみたい.対象は2019年の47都道府県とする.

“2019年の熱中症搬送人員数の予測と実際をEXCELの組み合わせグラフで描く” の続きを読む

熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる

 以前の記事では都道府県人口の対数をオフセット項として一般化線形回帰分析を行った.実際のところ,年代別の搬送人員としては65歳以上の高齢者が圧倒的に多い.そのため,東京など労働人口の多いところでは予測性能が悪化する可能性がある.今回はオフセット項の都道府県人口を3区分に分け,65歳以上人口の対数をオフセット項として採用してみたところ予測性能が改善したと思われたので記事とした.

“熱中症搬送人員数のオフセット項を65歳以上人口に変更してみる” の続きを読む